A characterization of projective subspaces of codimension two as quasi-symmetric designs with good blocks
Document Type
Article
Publication Date
7-28-2006
Department
Department of Mathematical Sciences
Abstract
Consider an incidence structure whose points are the points of a PGn (n + 2, q) and whose block are the subspaces of codimension two, where n ≥ 2. Since every two subspaces of codimension two intersect in a subspace of codimension three or codimension four, it is easily seen that this incidence structure is a quasi-symmetric design. The aim of this paper is to prove a characterization of such designs (that are constructed using projective geometries) among the class of all the quasi-symmetric designs with correct parameters and with every block a good block. The paper also improves an earlier result for the special case of n = 2 and obtains a Dembowski-Wagner-type result for the class of all such quasi-symmetric designs.
Publication Title
Discrete Mathematics
Recommended Citation
Baartmans, A.,
&
Sane, S.
(2006).
A characterization of projective subspaces of codimension two as quasi-symmetric designs with good blocks.
Discrete Mathematics,
306(14), 1493-1501.
http://doi.org/10.1016/j.disc.2005.11.034
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/6282