A curl-conforming weak Galerkin method for the quad-curl problem
Document Type
Article
Publication Date
7-4-2019
Department
Department of Mathematical Sciences
Abstract
The quad-curl problem arises from the inverse electromagnetic scattering theory and magnetohydrodynamics. In this paper, a weak Galerkin method is proposed using the curl-conforming Nédélec elements. On one hand, the method avoids the construction of the curl–curl conforming elements and thus solves a smaller linear system. On the other hand, it is much simpler than the case of using the fully discontinuous elements. For polynomial spaces of order k, error estimates of O(hk−1) in the energy norm and of O(hk) in the H(curl) norm are established, which are validated by the numerical examples.
Publication Title
BIT Numerical Mathematics
Recommended Citation
Sun, J.,
Zhang, Q.,
&
Zhang, Z.
(2019).
A curl-conforming weak Galerkin method for the quad-curl problem.
BIT Numerical Mathematics, 1-22.
http://doi.org/10.1007/s10543-019-00764-5
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/603
Publisher's Statement
© Springer Nature B.V. 2019. Publisher’s version of record: https://doi.org/10.1007/s10543-019-00764-5