Evaluation of environmental impacts from microalgae cultivation in open-air raceway ponds: Analysis of the prior literature and investigation of wide variance in predicted impacts

Document Type

Article

Publication Date

5-1-2012

Abstract

It is often difficult to compare publications assessing the sustainability of algal biomass as a feedstock for biofuels, due to differences in data aggregation, life cycle boundaries, technical and life cycle assumptions, environmental metrics considered, and use of experimental, modeled or assumed data. Input data for the algae cultivation stage was collected from published studies, focusing on microalgae production in open-air raceway ponds. Input data was normalized to a consistent functional unit, 1. kg of dry algal biomass. Environmental impacts were applied consistently to the different study inputs in order to eliminate this source of variation between the studies. Greenhouse gas emissions, fossil energy demand, and consumptive freshwater use were tabulated for the algal feedstock growth stage for open pond systems, and results were categorized (energy use, macronutrient fertilizers, and everything else) to compare the different studies in general terms. Environmental impacts for the cultivation of algal biomass in the considered reports varied by over two orders of magnitude. To illustrate impacts of variability in the cultivation stage on the ultimate environmental footprint of microalgae biofuels, algal oil harvesting, extraction and conversion to Green Jet Fuel was examined using the Renewable Jet Fuel process developed by Honeywell's UOP. © 2012 Elsevier B.V.

Publication Title

Algal Research

Share

COinS