An atomistic study of grain boundary segregation and cracking

Document Type

Article

Publication Date

8-2-1984

Department

Department of Materials Science and Engineering; Department of Physics

Abstract

A Monte Carlo model is applied to study a Σ = 5 (310) fcc tilt boundary structure and impurity segregation to this boundary. The Johnson-type potential functions are used to express atomic interactions for two binary alloys of NiCu and CuSb systems. Through atomic relaxation near absolute zero, the basic structural unit of the Σ = 5 CSL boundary is found to dissociate into two subunits. For the NiCu system, copper segregation to the boundary follows the Gibbsian equilibrium segregation behavior in which the segregation is localized on a few atomic layers, its amount increases with increase in the bulk concentration but decreases with increase in temperature. For the CuSb system, an assumption of the CuCu bond weakening due to the strong, adjacent CuSb bonds is also incorporated to realize the embrittling effect of Sb atoms. The preferential site for the large Sb atoms is the vertex of a pentagonal bipyramid in the Σ = 5 grain boundary. Without bond weakening, the Sb-segregated grain boundary maintains a structure combined with a distorted pentagonal bipyramid and a capped trigonal prism. However, with bond weakening some bonds of the trigonal prisms are disrupted in order to form new pentagonal bipyramids. When a uniaxial strain is applied in the direction perpendicular to the grain boundary plane, the weakened copper bonds become the source of microcracks thus enhancing brittle fracture along the Sb-segregated grain boundary.

Publication Title

Surface Science

Share

COinS