Nanotopography and Surface Stress Analysis of Ti6Al4V Bioimplant: An Alternative Design for Stability

Document Type

Article

Publication Date

11-2015

Department

Department of Mechanical Engineering-Engineering Mechanics

Abstract

The mechanical stability of biomedical Ti6Al4V rods with vertically aligned nanotubes structure formed on their surface has yet to be fully tested during insertion into the bone. The surface of rods impacted during insertion into a bone makes shear contact with bone, generating an interfacial stress. This stress plays an important role in osseointegration and may contribute to loosening between the bone and the implant during surgery. In the current study, the mechanical stability of various Ti6Al4V surfaces, including machined (M), rough (R), machined-anodized (MA), and rough-anodized (RA) surfaces, were tested and fully analyzed during insertion and pullout test into a simulant bone with densities 15 and 20 pounds per cubic foot (pcf). Our initial results from the field emission scanning electron microscopy images taken before and after insertion reveal that titania nanotubes remained stable and maintained their structural integrity during the insertion and pullout Instron test. Furthermore, from the interfacial stress calculation during the insertion, it was observed that compared with nonanodized rods, a higher force was required to insert the anodized rods. The interfacial stress generated during the insertion of anodized rods was 1.03 ± 0.11 MPa for MA and 1.10 ± 0.36 MPa for RA, which is significantly higher (p < 0.05) than nonanodized rods with 0.36 ± 0.07 MPa for M and 0.36 ± 0.08 MPa for R in simulant bone with density of 15 pcf. Similar behavior was also observed in 20 pcf simulant bone. Energy dissipated during anodized rod insertion (i.e., MA = 1.3 ± 0.04 Nm and RA = 1.23 ± 0.24 Nm) was not significantly different than nonanodized rod insertion (i.e., M = 0.9 ± 0.05 Nm and R = 1.04 ± 0.04 Nm) into 15 pcf simulant bone. The high stress during insertion of anodized rods suggests that the nanotubes on the surface can cause gripping and high friction on the radial side, resisting the counter motion of the bone. The latter may play a beneficial role in preventing micromotion between the bone and implant and therefore reducing the chance of fretting/fatigue corrosion.

Publication Title

JOM

Share

COinS