Document Type

Article

Publication Date

6-8-2010

Department

Department of Electrical and Computer Engineering

Abstract

Electrical transport in metallic carbon nanotubes, especially the ones with diameters of the order of a few nanometers can be best described using the Tomanaga Luttinger liquid (TL) model. Recently, the TL model has been used to create a convenient transmission line like phenomenological model for carbon nanotubes. In this paper, we have characterized metallic nanotubes based on that model, quantifying the quantum capacitances of individual metallic single walled carbon nanotubes and crystalline bundles of single walled tubes of different diameters. Our calculations show that the quantum capacitances for both individual tubes and the bundles show a weak dependence on the diameters of their constituent tubes. The nanotube bundles exhibit a significantly large quantum capacitance due to enhancement of density of states at the Fermi level.

Publisher's Statement

© 2010 The Author(s). Publisher’s version of record: https://doi.org/10.1007/s11671-010-9656-4

Publication Title

Nanoscale Research Letters

Creative Commons License

Creative Commons Attribution-NonCommercial 4.0 International License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Version

Publisher's PDF

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.