Interpreting slip transmission through mechanically induced interface energies: a Fe–3%Si case study
Document Type
Article
Publication Date
1-2019
Department
Department of Materials Science and Engineering
Abstract
Nanoindentation experiments are performed at the vicinity of grain boundaries, in Fe–Si tricrystals, to illustrate the existence of a critical stress at which slip transmission occurs across grain boundaries. Such a critical stress can be considered as a grain boundary yield stress and can be quantified within the framework of conventional gradient plasticity theory, enhanced by introducing a new mechanically induced “interface energy” term. The present study takes a first step in trying to provide a physical interpretation for this “far from thermodynamic equilibrium” interface energy term by conducting nanoindentation tests in three Fe–3wt%Si tricrystals, each of which had three distinct types of grain boundary misorientations, namely 22.5°, 42.0° and 44.6°. By relating the experimentally measured grain boundary yield stress to the predictions of interfacial gradient plasticity, it is possible to determine the interface parameter (ξ), which provides a measure of the resistance to slip transmission for each grain boundary examined. In particular, microscopic arguments from standard dislocation theory reveal that ξ depends on both the grain interior properties and the grain boundary structure. The internal length is shown to depend on multiple characteristic lengths of the microstructure, while a new expression is deduced for relating the Hall-Petch slope to both the interface parameter and internal length.
Publication Title
Journal of Materials Science
Recommended Citation
Aifantis, K.,
Deng, H.,
Shibata, H.,
Tsurekawa, S.,
Lejček, P.,
&
Hackney, S. A.
(2019).
Interpreting slip transmission through mechanically induced interface energies: a Fe–3%Si case study.
Journal of Materials Science,
54(2), 1831-1843.
http://doi.org/10.1007/s10853-018-2929-5
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/4921