Document Type
Article
Publication Date
6-2019
Department
Department of Mathematical Sciences
Abstract
Given an STS(v), we ask if there is a permutation of the points of the design such that no L consecutive points in this permutation contain a block of the design. Such a permutation is called an L-good sequencing. We prove that 3-good sequencings exist for any STS(v) with v>3and 4-good sequencings exist for any STS(v) with v>71. Similar results also hold for partial STS(v). Finally, we determine the existence or nonexistence of 4-good sequencings for all the nonisomorphic STS(v) with v=7,9,13 and 15.
Publication Title
The Australasian Journal of Combinatorics
Recommended Citation
Kreher, D. L.,
&
Stnson, D. R.
(2019).
Block-avoiding sequencings of points in Steiner triple systems.
The Australasian Journal of Combinatorics,
74(3).
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/481
Version
Publisher's PDF
Publisher's Statement
©The author(s). Article deposited here in compliance with publisher policies. Publisher's version of record: http://ajc.maths.uq.edu.au/pdf/74/ajc_v74_p498.pdf