Some consequences of thermosolutal convection: The grain structure of castings

Document Type

Article

Publication Date

3-1-1996

Department

Department of Materials Science and Engineering

Abstract

The essential principles of thermosolutal convection are outlined, and how convection provides a transport mechanism between the mushy region of a casting and the open bulk liquid is illustrated. The convective flow patterns which develop assist in heat exchange and macroscopic solute segregation during solidification; they also provide a mechanism for the transport of dendritic fragments from the mushy region into the bulk liquid. Surviving fragments become nuclei for equiaxed grains and so lead to blocking of the parental columnar, dendritic growth front from which they originated. The physical steps in such a sequence are considered and some experimental data are provided to support the argument.

Publication Title

Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science

Share

COinS