Weak k-majorization and polyhedra
Document Type
Article
Publication Date
3-1998
Department
Department of Mathematical Sciences
Abstract
For integers k and n with k ≤ n a vector x ∈ ℝn is said to be weakly k-majorized by a vector q ∈ ℝk if the sum of the r largest components of x does not exceed the sum of the r largest components of q, for r = 1, . . . , k. For a given q the set of vectors weakly k-majorized by q defines a polyhedron P(q; k). We determine the vertices of both P(q; k) and its integer hull Q(q; k). Furthermore a complete and nonredundant linear description of Q(q; k) is given.
Publication Title
Mathematical Programming, Series B
Recommended Citation
Dahl, G.,
&
Margot, F.
(1998).
Weak k-majorization and polyhedra.
Mathematical Programming, Series B,
81(1), 37-53.
http://doi.org/10.1007/BF01584843
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/4327
Publisher's Statement
© 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V. Publisher’s version of record: https://doi.org/10.1007/BF01584843