Stability and carrier transport properties of phosphorene-based polymorphic nanoribbons

Document Type

Article

Publication Date

2-20-2018

Department

Department of Physics

Abstract

Few-layer black phosphorene has recently attracted significant interest in the scientific community. In this paper, we consider several polymorphs of phosphorene nanoribbons (PNRs) and employ deformation potential theory within the effective mass approximation, together with density functional theory, to investigate their structural, mechanical and electronic properties. The results show that the stability of a PNR strongly depends on the direction along which it can be cut from its 2D counterpart. PNRs also exhibit a wide range of line stiffnesses ranging from 6 × 1010 eV m−1 to 18 × 1011 eV m−1, which has little dependence on the edge passivation. Likewise, the calculated electronic properties of PNRs show them to be either a narrow-gap semiconductor (E g < 1 eV) or a wide-gap semiconductor (E g > 1 eV). The carrier mobility of PNRs is found to be comparable to that of black phosphorene. Some of the PNRs show an n-type (p-type) semiconducting character owing to their higher electron (hole) mobility. Passivation of the edges leads to n-type ↔ p-type transition in many of the PNRs considered. The predicted novel characteristics of PNRs, with a wide range of mechanical and electronic properties, make them potentially suitable for use in nanoscale devices.

Publisher's Statement

© 2018 IOP Publishing Ltd. Publisher’s version of record: https://doi.org/10.1088/1361-6528/aaac43

Publication Title

Nanotechnology

Share

COinS