Electricity storage in biofuels: Selective electrocatalytic reduction of levulinic acid to valeric acid or γ-valerolactone
Document Type
Article
Publication Date
4-2013
Department
Department of Chemical Engineering
Abstract
Herein, we report an effective approach to electricity storage in biofuels by selective electrocatalytic reduction of levulinic acid (LA) to high-energy-density valeric acid (VA) or γ-valerolactone (gVL) on a non-precious Pb electrode in a single-polymer electrolyte membrane electrocatalytic (flow) cell reactor with a very high yield of VA (> 90 %), a high Faradaic efficiency (> 86 %), promising electricity storage efficiency (70.8 %), and a low electricity consumption (1.5 kWhLVA-1). The applied potential and electrolyte pH can be used to accurately control the reduction products: lower overpotentials favor the production of gVL, whereas higher overpotentials facilitate the formation of VA. A selectivity of 95% to VA in acidic electrolyte (pH 0) and 100% selectivity to gVL in neutral electrolyte (pH 7.5) are obtained. The effect of the molecular structure on the electrocatalytic reduction of ketone and aldehyde groups of biomass compounds was investigated. Whereas LA can be fully electroreduced to VA though a four-electron transfer, the C=O groups are only electroreduced to -OH by a two-electron-transfer process when glyoxylic acid and pyruvic acid serve as feedstocks.
Publication Title
ChemSusChem
Recommended Citation
Xin, L.,
Zhang, Z.,
Qi, J.,
Chadderdon, D.,
Qiu, Y.,
Warsko, K.,
&
Li, W.
(2013).
Electricity storage in biofuels: Selective electrocatalytic reduction of levulinic acid to valeric acid or γ-valerolactone.
ChemSusChem,
6(4), 674-686.
http://doi.org/10.1002/cssc.201200765
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/3583