Raman spectrometer for field determination of H2O in natural gas pipelines
Document Type
Article
Publication Date
5-12-2018
Department
Department of Physics
Abstract
Spontaneous Raman spectroscopy was used to measure changes in the ratio of water vapor to molecular nitrogen gas in laboratory air sample with relative uncertainty of 5 × 10−4 during 100 s observations. Experimental data were collected during 100 s-runs in order to obtain sufficient signal-to-noise ratios. Estimated detection limit of water vapor at signal-to-noise ratio equal to 1 was determined to be equal to 1.4 × 1013 molecules per cm3, which is equivalent to molar concentration of 7.4 × 10−7 at Standard Temperature and Pressure (STP). The achieved sensitivities make our Raman spectrometer suitable for noninvasive, rapid monitoring of gaseous species with very broad applications, for example in natural gas pipe-lines. An inexpensive, 70 mW power, multi-mode, diode-pumped solid-state laseroperating near 532 nm served as an excitation source. The high sensitivity was achieved using a multi-pass cell built out of high reflectivity concave mirrors.
Publication Title
Journal of Natural Gas Science and Engineering
Recommended Citation
Chibirev, I.,
Mazzoleni, C.,
van der Voort, D.,
Borysow, J.,
&
Fink, M.
(2018).
Raman spectrometer for field determination of H2O in natural gas pipelines.
Journal of Natural Gas Science and Engineering,
55, 426-430.
http://doi.org/10.1016/j.jngse.2018.05.015
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/355
Publisher's Statement
© 2018 Elsevier B.V. Publisher's version of record: https://doi.org/10.1016/j.jngse.2018.05.015