Microphysical consequences of the spatial distribution of ice nucleation in mixed-phase stratiform clouds
Document Type
Article
Publication Date
7-28-2014
Department
Atmospheric Sciences
Abstract
Mixed-phase stratiform clouds can persist even with steady ice precipitation fluxes, and the origin and microphysical properties of the ice crystals are of interest. Vapor deposition growth and sedimentation of ice particles along with a uniform volume source of ice nucleation lead to a power law relation between ice water content wi and ice number concentration ni with exponent 2.5. The result is independent of assumptions about the vertical velocity structure of the cloud and is therefore more general than the related expression of Yang et al. (2013). The sensitivity of the wi-ni relationship to the spatial distribution of ice nucleation is confirmed by Lagrangian tracking and ice growth with cloud volume, cloud top, and cloud base sources of ice particles through a time-dependent cloud field. Based on observed wi and ni from Indirect and Semi-Direct Aerosol Campaign, a lower bound of 0.006 m -3 s-1 is obtained for the ice crystal formation rate.
Publication Title
Geophysical Research Letters
Recommended Citation
Yang, F.,
Ovchinnikov, M.,
&
Shaw, R.
(2014).
Microphysical consequences of the spatial distribution of ice nucleation in mixed-phase stratiform clouds.
Geophysical Research Letters,
41(14), 5280-5287.
http://doi.org/10.1002/2014GL060657
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/3341