Quantum twisted codes

Document Type

Article

Publication Date

2000

Department

Department of Mathematical Sciences

Abstract

A major contribution of [1] is a reduction of the problem of correcting errors in quantum computations to the construction of codes in binary symplectic spaces. This mechanism is known as the additive or stabilizer construction. We consider an obvious generalization of these quantum codes in the symplectic geometry setting and obtain general constructions using our theory of twisted BCH-codes (also known as Reed-Solomon subspace subcodes). This leads to families of quantum codes with good parameters. Moreover, the generator matrices of these codes can be described in a canonical way.

Publication Title

Journal of Combinatorial Designs

Share

COinS