Document Type
Article
Publication Date
2017
Department
Department of Mathematical Sciences
Abstract
The following generalization of distance magic graphs was introduced in [2]. A directed ℤn- distance magic labeling of an oriented graph G = (V,A) of order n is a bijection ℓ: V → ℤn with the property that there is a μ ∈ ℤn (called the magic constant) such that If for a graph G there exists an orientation G such that there is a directed ℤn-distance magic labeling ℓ for G, we say that G is orientable ℤn-distance magic and the directed ℤn-distance magic labeling ℓ we call an orientable ℤn-distance magic labeling. In this paper, we find orientable ℤn- distance magic labelings of the Cartesian product of cycles. In addition, we show that even-ordered hypercubes are orientable ℤn-distance magic.
Publication Title
Electronic Journal of Graph Theory and Applications
Recommended Citation
Freyberg, B.,
&
Keranen, M. S.
(2017).
Orientable ℤ < inf> n -distance magic labeling of the Cartesian product of many cycles.
Electronic Journal of Graph Theory and Applications,
5(2), 304-311.
http://doi.org/10.5614/ejgta.2017.5.2.11
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/3217
Creative Commons License
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.
Version
Publisher's PDF