Document Type

Article

Publication Date

8-22-2016

Department

Department of Mechanical Engineering-Engineering Mechanics

Abstract

This article addresses the thermoelastic interaction due to inclined load on a homogeneous isotropic half-space in context of two-temperature generalized theory of thermoelasticity with dual-phase-lags. It is assumed that the inclined load is a linear combination of both normal and tangential loads. The governing equations are solved by using the normal mode analysis. The variations of the displacement, stress, conductive temperature, and thermodynamic temperature distributions with the horizontal distance have been shown graphically. Results of some earlier workers have also been deduced from the present investigation as special cases. Some comparisons are graphically presented to estimate the effects of the two-temperature parameter, the dual-phase-lags parameters and the inclination angle. It is noticed that there is a significant difference in the values of the studied fields for different value of the angle of inclination. The method presented here maybe applicable to a wide range of problems in thermodynamics and thermoelasticity.

Publisher's Statement

© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License. Publisher’s version of record: https://doi.org/10.5194/ms-7-179-2016

Publication Title

Mechanical Sciences

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Version

Publisher's PDF

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.