Droplet impingement and evaporation on a solid surface

Document Type

Book Chapter

Publication Date

11-4-2018

Department

Department of Mechanical Engineering-Engineering Mechanics

Abstract

An efficient spray injection leads to better vaporization and better air–fuel mixing, resulting in the stable combustion and reduced emissions in the internal combustion (IC) engines. The impingement of liquid fuels on chamber wall or piston surface in IC engines is a common phenomenon, and fuel film formed during the impingement plays a critical role in engine performance and emissions, particularly under cold start conditions. Therefore, the study on the characteristics of spray impingement on the chamber wall or piston surface is necessary. However, first, due to the complexity of the practical fuel injection systems, it is difficult to attain the detailed specific information of the spray impingement from the experiments such as droplet size, mass, number, and velocity distributions in the vicinity of wall region. Second, because of the Lagrangian particle/parcel concept (a particle representing a number of droplets in simulations), the spray–wall interaction model under Eulerian–Lagrangian approach is often developed based on the individual droplet. Therefore, the individual droplet’s impingement on wall and the droplet-to-droplet collision have been extensively studied to assist in a profound perception on the spray–wall impingement. In this chapter, the encouraging experimental observations of applying optical diagnostics technology to study droplet–wall impingement are extensively discussed. Single droplet impingement on a solid surface with various conditions was examined to understand the detailed impinging dynamic process. The droplet–wall interaction outcomes, in particular focusing on the splashing criteria, were inspected, and a new correlation of deposition–splashing is developed. Post-impingement characterizations including spreading factor, height ratio, contact line velocity, and dynamic contact angle were then analyzed based on the experimental data at various test conditions. Further, the non-evaporation volume of fluid (VOF) method based on Eulerian approach was used to characterize single droplet impinging on the wall and provide a better understanding of the dynamic impact process. The simulation results of the spreading factor and height ratio matched well with the experimental results during the droplet impingement process. In addition, due to the evaporation drawing more attention during the engine combustion process, an evaporation VOF (e-VOF) sub-model was developed and applied to multi-droplet impingement on a heated surface to qualitatively and quantitatively analyze the vaporizing process as droplets impacting onto the hot surface. The information obtained from VOF simulations can be applied to improve the spray–wall interaction models in the liquid spray Eulerian–Lagrangian method.

Publication Title

Two-phase flow for automotive and power generation sectors

Share

COinS