A long lost key opens an ancient lock: Drosophila Myb causes a synthetic multivulval phenotype in nematodes
Document Type
Article
Publication Date
5-1-2020
Department
Department of Biological Sciences
Abstract
The five-protein MuvB core complex is highly conserved in animals. This nuclear complex interacts with RB-family tumor suppressor proteins and E2F-DP transcription factors to form DREAM complexes that repress genes that regulate cell cycle progression and cell fate. The MuvB core complex also interacts with Myb family oncoproteins to form the Myb-MuvB complexes that activate many of the same genes.We show that animal-type Myb genes are present in Bilateria, Cnidaria and Placozoa, the latter including the simplest known animal species. However, bilaterian nematode worms lost their animal-type Myb genes hundreds of millions of years ago. Nevertheless, amino acids in the LIN9 and LIN52 proteins that directly interact with the MuvB-binding domains of human B-Myb and Drosophila Myb are conserved in Caenorhabditis elegans. Here, we show that, despite greater than 500 million years since their last common ancestor, the Drosophila melanogaster Myb protein can bind to the nematode LIN9-LIN52 proteins in vitro and can cause a synthetic multivulval (synMuv) phenotype in vivo. This phenotype is similar to that caused by loss-of-function mutations in C. elegans synMuvB-class genes including those that encode homologs of the MuvB core, RB, E2F and DP. Furthermore, amino acid substitutions in the MuvB-binding domain of Drosophila Myb that disrupt its functions in vitro and in vivo also disrupt these activities in C. elegans. We speculate that nematodes and other animals may contain another protein that can bind to LIN9 and LIN52 in order to activate transcription of genes repressed by DREAM complexes.
Publication Title
Biology Open
Recommended Citation
Vorster, P.,
Goetsch, P.,
Wijeratne, T.,
Guiley, K.,
Andrejka, L.,
Tripathi, S.,
Larson, B.,
Rubin, S.,
Strome, S.,
&
Lipsick, J.
(2020).
A long lost key opens an ancient lock: Drosophila Myb causes a synthetic multivulval phenotype in nematodes.
Biology Open,
9(5).
http://doi.org/10.1242/bio.051508
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/2700
Publisher's Statement
© 2020. Published by The Company of Biologists Ltd. Publisher’s version of record: https://doi.org/10.1242/bio.051508