Document Type

Article

Publication Date

1-21-2011

Department

Department of Computer Science

Abstract

In recent years, there is an emerging direction that leverages information theory to solve many challenging problems in scientific data analysis and visualization. In this article, we review the key concepts in information theory, discuss how the principles of information theory can be useful for visualization, and provide specific examples to draw connections between data communication and data visualization in terms of how information can be measured quantitatively. As the amount of digital data available to us increases at an astounding speed, the goal of this article is to introduce the interested readers to this new direction of data analysis research, and to inspire them to identify new applications and seek solutions using information theory.

Publisher's Statement

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/.) Publisher’s version of record: https://doi.org/10.3390/e13010254

Publication Title

Entropy

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Version

Publisher's PDF

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.