Document Type
Article
Publication Date
3-11-2014
Department
Department of Biomedical Engineering
Abstract
As a prominent concern regarding implantable devices, eliminating the threat of opportunistic bacterial infection represents a significant benefit to both patient health and device function. Current treatment options focus on chemical approaches to negate bacterial adhesion, however, these methods are in some ways limited. The scope of this study was to assess the efficacy of a novel means of modulating bacterial adhesion through the application of vibrations using magnetoelastic materials. Magnetoelastic materials possess unique magnetostrictive property that can convert a magnetic field stimulus into a mechanical deformation. In vitro experiments demonstrated that vibrational loads generated by the magnetoelastic materials significantly reduced the number of adherent bacteria on samples exposed to Escherichia coli, Staphylococcus epidermidis and Staphylococcus aureus suspensions. These experiments demonstrate that vibrational loads from magnetoelastic materials can be used as a post-deployment activated means to deter bacterial adhesion and device infection.
Publication Title
Journal of Functional Biomaterials
Recommended Citation
Paces, W. R.,
Holmes, H.,
Vlaisavljevich, E.,
Snyder, K. L.,
Tan, E. L.,
Rajachar, R.,
&
Ong, K. G.
(2014).
Application of sub-micrometer vibrations to mitigate bacterial adhesion.
Journal of Functional Biomaterials,
5(1), 15-26.
http://doi.org/10.3390/jfb5010015
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/1972
Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.
Version
Publisher's PDF
Publisher's Statement
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). Publisher’s version of record: https://doi.org/10.3390/jfb5010015