Unified strength model of asphalt mixture under various loading modes

Chengdong Xia, Changsha University of Science & Technology
Songtao Lv, Changsha University of Science & Technology
Lingyun You, Michigan Technological University
Dong Chen, Changsha University of Science & Technology
Yipeng Li, Changsha University of Science & Technology
Jianlong Zheng, Changsha University of Science & Technology

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Publisher’s version of record: https://doi.org/10.3390/ma12060889

Abstract

Although the rutting resistance, fatigue cracking, and the resistance to water and frost are important for the asphalt pavement, the strength of asphalt mixture is also an important factor for the asphalt mixture design. The strength of asphalt mixture is directly associated with the overall performance of asphalt mixture. As a top layer material of asphalt pavement, the strength of asphalt mixture plays an indispensable role in the top structural bearing layer. In the present design system, the strength of asphalt pavement is usually achieved via the laboratory tests. The stress states are usually different for the different laboratory approaches. Even at the same stress level, the laboratory strengths of asphalt mixture obtained are significantly different, which leads to misunderstanding of the asphalt mixtures used in asphalt pavement structure design. The arbitrariness of strength determinations affects the effectiveness of the asphalt pavement structure design in civil engineering. Therefore, in order to overcome the design deviation caused by the randomness of the laboratory strength of asphalt mixtures, in this study, the direct tension, indirect tension, and unconfined compression tests were implemented on the specimens under different loading rates. The strength model of asphalt mixture under different loading modes was established. The relationship between the strength ratio and loading rate of direct tension, indirect tension, and unconfined compression tests was adopted separately. Then, one unified strength model of asphalt mixture with different loading modes was established. The preliminary results show that the proposed unified strength model could be applied to improve the accurate degree of laboratory strength. The effectiveness of laboratory-based asphalt pavement structure design can therefore be promoted.