Document Type
Article
Publication Date
7-26-2018
Department
Department of Chemical Engineering
Abstract
Fluorite (CaF2), as an important strategic mineral source, is usually separated from calcite by the common froth flotation method, but this separation is still not selective enough. The development of a selective collector and/or depressant is the key to achieving high selective separation. 1-Hydroxyethylidene-1,1-diphosphonic acid (HEDP or H4L) is widely used as an environmentally friendly water treatment reagent due to its low cost and excellent anti-scaling performance in an aqueous solution. In this study, a novel reagent scheme was developed using HEDP as a fluorite depressant and sodium oleate (NaOL) as a calcite collector for the first time. When 3 × 10−5 mol/L of HEDP and 6 × 10−5 mol/L of NaOL were used at pH 6, the optimal selective separation for single minerals and mixed binary minerals was obtained. Zeta potential measurements indicated that HEDP possessed a stronger adsorption on fluorite than calcite, while NaOL did the opposite. This novel reagent scheme is of low cost, uses a small dosage, and is friendly to the environment, which makes it a promising reagent scheme for fluorite flotation in industrial application.
Publication Title
Minerals
Recommended Citation
Wang, J.,
Zhou, Z.,
Gao, Y.,
Sun, W.,
Hu, Y.,
&
Gao, Z.
(2018).
Reverse flotation separation of fluorite from calcite: A novel reagent scheme.
Minerals,
8(8), 313.
http://doi.org/10.3390/min8080313
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/1932
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Version
Publisher's PDF
Publisher's Statement
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Publisher’s version of record: https://doi.org/10.3390/min8080313