Document Type

Article

Publication Date

10-15-2016

Department

Department of Biological Sciences

Abstract

(1) Background: Plant electrical signals are important physiological traits which reflect plant physiological state. As a kind of phenotypic data, plant action potential (AP) evoked by external stimuli—e.g., electrical stimulation, environmental stress—may be associated with inhibition of gene expression related to stress tolerance. However, plant AP is a response to environment changes and full of variability. It is an aperiodic signal with refractory period, discontinuity, noise, and artifacts. In consequence, there are still challenges to automatically recognize and classify plant AP; (2) Methods: Therefore, we proposed an AP recognition algorithm based on dynamic difference threshold to extract all waveforms similar to AP. Next, an incremental template matching algorithm was used to classify the AP and non-AP waveforms; (3) Results: Experiment results indicated that the template matching algorithm achieved a classification rate of 96.0%, and it was superior to backpropagation artificial neural networks (BP-ANNs), supported vector machine (SVM) and deep learning method; (4) Conclusion: These findings imply that the proposed methods are likely to expand possibilities for rapidly recognizing and classifying plant action potentials in the database in the future.

Publisher's Statement

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). Publisher’s version of record: https://doi.org/10.3390/a9040070

Publication Title

Algorithms

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Version

Publisher's PDF

Included in

Biology Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.