Document Type
Article
Publication Date
9-19-2017
Department
Department of Mechanical Engineering-Engineering Mechanics
Abstract
Rarefication effects on jet impingement loads are studied by comparing recent new formulas at the collisionless flow limit and numerical simulations. The jet exit size is finite, and can be either planar or round. In the simulations, the jets have different degrees of rarefication, with a Knudsen (Kn) number ranging from 0 to infinity; i.e., the jet flows can be continuum, collisional, or collisionless. The comparison results indicate that (1) the new surface load formulas are accurate at the collisionless flow limit; (2) in general, the formulas offer upper limits for the peak loads; (3) however, it is improper to assert that local loads always decrease. The new formulas can offer fast estimations of impingement loads. This may be quite helpful for applications in space engineering by significantly reducing the amount of simulations and experiment costs. Those expressions explicitly include non-dimensional parameters, and their contribution and influence on the loads can be studied in a systematic manner (e.g., with a swift parameter study).
Publication Title
Aerospace
Recommended Citation
Cai, S.,
Cai, C.,
Zhang, K.,
&
Li, J.
(2017).
Rarefication effects on jet impingement loads.
Aerospace,
4(3).
http://doi.org/10.3390/aerospace4030048
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/1876
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Version
Publisher's PDF
Publisher's Statement
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Publisher’s version of record: https://doi.org/10.3390/aerospace4030048