Iron magnetic nanoparticle-induced ROS generation from catechol-containing microgel for environmental and biomedical applications

Document Type

Article

Publication Date

2-18-2020

Department

Department of Biomedical Engineering

Abstract

Reactive oxygen species (ROS) can degrade organic compounds and function as a broad-spectrum disinfectant. Here, dopamine methacrylamide (DMA) was used to prepare catechol-containing microgels, which can release ROS via metal-catechol interaction. A combination of the microgel and iron magnetic nanoparticle (FeMNP) significantly reduced the concentration of four organic dyes (Alizarin Red S, Rhodamine B, Crystal Violet, and Malachite Green) and an antibiotic drug, ciprofloxacin, dissolved in solution. Degradation of dye occurred across a wide range of pH levels (pH 3–9). This simple combination was also antimicrobial against both Escherichia coli and Staphylococcus aureus. Electron paramagnetic resonance spectroscopy (EPR) results indicate that singlet oxygen was generated during the reaction between catechol and FeMNP at both pH 3 and 7.4, which was responsible for the degradation of organic compounds and bactericidal features of the microgel. Unlike autoxidation that only occurs at a neutral to basic pH, FeMNP-induced catechol oxidation generated singlet oxygen over a wide range of pH level. Additionally, catechol chelates heavy metal ions, resulting in their removal from solution and repurposed these metal ions for dye degradation. This multifunctional microgel can potentially be used for environmental applications for the removal of organic pollutants and heavy metal ions from wastewater, as well as reducing bacterial infection in biomedical applications.

Publication Title

ACS Applied Material Interfaces

Share

COinS