New Approach to Simultaneous In Situ Measurements of the air/liquid/solid interface using PM-IRRAS

Document Type

Article

Publication Date

3-16-2020

Department

Department of Chemistry; Department of Materials Science and Engineering

Abstract

Vibrational spectroscopy techniques have evolved to measure gases, liquids, and solids at surfaces and interfaces. In the field of surface-sensitive vibrational spectroscopy, infrared spectroscopy measures the adsorption on surfaces and changes from reactions. Previous polarized modulated-infrared reflection–absorption spectroscopy (PM-IRRAS) measurements at the gas/solid interface were developed to observe catalytic reactions near reaction conditions. Other PM-IRRAS measurements use liquid cells where the sample is submerged and compressed against a prism that has traditionally been used for electrochemical reactions. This article presents a new method that is used to observe in situ adsorption of molecules using PM-IRRAS at the gas/liquid/solid interface. We demonstrate the meniscus method by measuring the adsorption of octadecanethiol on gold surfaces. Characterization of self-assembled monolayers (SAMs), the “gold standard” for PM-IRRAS calibration measurements, was measured in ethanol solutions. The condensed-phase (air/liquid) interface in addition to the liquid/solid interface was measured simultaneously in solution. These are compared with liquid attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy measurements to confirm the presence of the SAM and liquid ethanol. A model of the three-phase system is used to approximate the thickness of the liquid ethanol layer and correlate these values to signal attenuation using PM-IRRAS. This proof-of-concept study enables the measurement of reactions at the gas/liquid/solid interface that could be adapted for other reactions at the electrode and electrolyte interfaces with applications in environmental science and heterogeneous catalysis.

Publication Title

Langmuir

Share

COinS