Document Type


Publication Date



Department of Mechanical Engineering-Engineering Mechanics; Department of Applied Computing


This paper proposes an algorithm that provides operational strategies for multiple tethered autonomous underwater vehicle (T-AUV) systems for entanglement-free navigation. T-AUVs can perform underwater tasks under reliable communication and power supply, which is the most substantial benefit of their operation. Thus, if one can overcome the entanglement issues while utilizing multiple tethered vehicles, the potential applications of the system increase including ecosystem exploration, infrastructure inspection, maintenance, search and rescue, underwater construction, and surveillance. In this study, we focus on developing strategies for task allocation, path planning, and scheduling that ensure entanglement-free operations while considering workload balancing among the vehicles. We do not impose restrictions on the size or shape of the vehicles at this stage; our primary focus is on efficient tether management as an initial work on the topic. To achieve entanglement-free navigation, we propose a heuristic based on the primal-dual technique, which enables initial task allocation and path planning while minimizing the maximum travel cost of the vehicles. Although this heuristic often generates sectioned paths due to its workload-balancing nature, we also propose a mixed approach to provide feasible solutions for non-sectioned initial paths. This approach combines entanglement avoidance techniques with time scheduling and sectionalization methods. To evaluate the effectiveness of our algorithm, extensive simulations were conducted with varying problem sizes. The computational results demonstrate the potential of our algorithm to be applied in real-time operations, as it consistently generates reliable solutions within a reasonable time frame.

Publisher's Statement

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. Publisher’s version of record:

Publication Title


Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Publisher's PDF



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.