Document Type
Article
Publication Date
6-13-2023
Department
Department of Mechanical Engineering-Engineering Mechanics; Department of Applied Computing
Abstract
This paper proposes an algorithm that provides operational strategies for multiple tethered autonomous underwater vehicle (T-AUV) systems for entanglement-free navigation. T-AUVs can perform underwater tasks under reliable communication and power supply, which is the most substantial benefit of their operation. Thus, if one can overcome the entanglement issues while utilizing multiple tethered vehicles, the potential applications of the system increase including ecosystem exploration, infrastructure inspection, maintenance, search and rescue, underwater construction, and surveillance. In this study, we focus on developing strategies for task allocation, path planning, and scheduling that ensure entanglement-free operations while considering workload balancing among the vehicles. We do not impose restrictions on the size or shape of the vehicles at this stage; our primary focus is on efficient tether management as an initial work on the topic. To achieve entanglement-free navigation, we propose a heuristic based on the primal-dual technique, which enables initial task allocation and path planning while minimizing the maximum travel cost of the vehicles. Although this heuristic often generates sectioned paths due to its workload-balancing nature, we also propose a mixed approach to provide feasible solutions for non-sectioned initial paths. This approach combines entanglement avoidance techniques with time scheduling and sectionalization methods. To evaluate the effectiveness of our algorithm, extensive simulations were conducted with varying problem sizes. The computational results demonstrate the potential of our algorithm to be applied in real-time operations, as it consistently generates reliable solutions within a reasonable time frame.
Publication Title
Robotics
Recommended Citation
Patil, A.,
Park, M.,
&
Bae, J.
(2023).
Coordinating Tethered Autonomous Underwater Vehicles towards Entanglement-Free Navigation.
Robotics,
12(3).
http://doi.org/10.3390/robotics12030085
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/17393
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Version
Publisher's PDF
Publisher's Statement
Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. Publisher’s version of record: https://doi.org/10.3390/robotics12030085