Document Type

Article

Publication Date

6-15-2023

Department

Department of Physics

Abstract

3-ray observations of the Cygnus Cocoon, an extended source surrounding the Cygnus X star-forming region, suggest the presence of a cosmic-ray accelerator reaching energies up to a few PeV. The very-high-energy (VHE, 0.1-100 TeV) 3-ray emission may be explained by the interaction of cosmic-ray hadrons with matter inside the Cocoon, but an origin of inverse Compton radiation by relativistic electrons cannot be ruled out. Inverse Compton 3-rays at VHE are accompanied by synchrotron radiation peaked in X-rays. Hence, X-ray observations may probe the electron population and magnetic field of the source. We observed 11 fields in or near the Cygnus Cocoon with the Neil Gehrels Swift Observatory's X-Ray Telescope (Swift-XRT) totaling 110 ks. We fit the fields to a Galactic and extragalactic background model and performed a log-likelihood ratio test for an additional diffuse component. We found no significant additional emission and established upper limits in each field. By assuming that the X-ray intensity traces the TeV intensity and follows a dN/dE E-2.5 spectrum, we obtained a 90 % upper limit of F X < 8.7 × 10-11 erg cm-2 s-1 or < 5.2 × 10-11 erg cm-2 s-1 on the X-ray flux of the entire Cygnus Cocoon between 2 and 10 keV depending on the choice of hydrogen column density model for the absorption. The obtained upper limits suggest that no more than one-quarter of the 3-ray flux at 1 TeV is produced by inverse Compton scattering, when assuming an equipartition magnetic field of 1/420 μG.

Publisher's Statement

© 2023. The Author(s). Published by the American Astronomical Society. Publisher’s version of record: https://doi.org/10.3847/1538-4357/accdde

Publication Title

Astrophysical Journal

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Version

Publisher's PDF

Included in

Physics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.