"Multi-Sensor and Multi-Scale Remote Sensing Approach for Assessing Slo" by Marta Zocchi, Anush Kasaragod et al.
 

Document Type

Article

Publication Date

6-1-2023

Department

Michigan Tech Research Institute; Department of Geological and Mining Engineering and Sciences

Abstract

Rapid slope instabilities (i.e., rockfalls) involving highway networks in mountainous areas pose a threat to facilities, settlements and life, thus representing a challenge for asset management plans. To identify different morphological expressions of degradation processes that lead to rock mass destabilization, we combined satellite and uncrewed aircraft system (UAS)-based products over two study sites along the State Highway 133 sector near Paonia Reservoir, Colorado (USA). Along with a PS-InSAR analysis covering the 2017–2021 interval, a high-resolution dataset composed of optical, thermal and multi-spectral imagery was systematically acquired during two UAS surveys in September 2021 and June 2022. After a pre-processing step including georeferencing and orthorectification, the final products were processed through object-based multispectral classification and change detection analysis for highlighting moisture or lithological variations and for identifying areas more susceptible to deterioration and detachments at the small and micro-scale. The PS-InSAR analysis, on the other hand, provided multi-temporal information at the catchment scale and assisted in understanding the large-scale morpho-evolution of the displacements. This synergic combination offered a multiscale perspective of the superimposed imprints of denudation and mass-wasting processes occurring on the study site, leading to the detection of evidence and/or early precursors of rock collapses, and effectively supporting asset management maintenance practices.

Publisher's Statement

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. Publisher’s version of record: https://doi.org/10.3390/rs15123016

Publication Title

Remote Sensing

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Version

Publisher's PDF

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 10
  • Usage
    • Downloads: 75
    • Abstract Views: 11
  • Captures
    • Readers: 24
  • Mentions
    • News Mentions: 1
see details

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.