Research progress on compatibility evaluation methods of polymer modifiers and petroleum asphalts

Document Type

Article

Publication Date

2023

Department

Department of Civil, Environmental, and Geospatial Engineering

Abstract

Six kinds of compatibility evaluation methods of polymer modifiers and petroleum asphalts were summarized including qualitative observation method, rheological method, thermodynamic method, chemical analysis method, topography method, and numerical simulation method. The advantages, disadvantages and applicability of different evaluation methods were analyzed and compared. Furthermore, suitable compatibility evaluation methods were recommended based on the blending reaction characteristics of polymer modifiers and petroleum asphalts, and it also looked forward to the future research direction of compatibility evaluation of polymer modifiers with petroleum asphalts. Research results show that polymer modified asphalt is a viscoelastic material. The phase separation coefficient based on rheological method is more sensitive to detect the difference between petroleum asphalts and polymer modifiers, and is suitable for evaluating their compatibility. A single evaluation index cannot accurately evaluate the compatibility of polymer modifiers and petroleum asphalts, and it is recommended to use multiple analysis methods for comprehensive evaluation. For physically blended polymer modified asphalts, the rheology based phase separation coefficient combined with the topography method can be used to evaluate the compatibility of polymer modified asphalts. For the compatibility evaluation of reactive polymer modifiers and petroleum asphalts, the phase separation coefficient and infrared spectroscopy are recommended. The molecular dynamics simulation method based on thermodynamics can further simulate and explain the interaction mechanism between polymer modifiers and petroleum asphalts from a microscopic perspective by setting appropriate polymer models, interaction temperatures, and other parameters. In the future, the storage time range of cigar tube test can be established according to actual storage conditions of polymer modified asphalts, and on this basis, the appropriate compatibility evaluation methods can be used to dynamically and continuously evaluate the compatibility between polymer modifiers and petroleum asphalts.

Publication Title

Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering

Share

COinS