POSITIVITY-PRESERVING LOCAL DISCONTINUOUS GALERKIN METHOD FOR PATTERN FORMATION DYNAMICAL MODEL IN POLYMERIZING ACTIN FLOCKS*

Document Type

Article

Publication Date

2-2023

Department

Department of Mathematical Sciences

Abstract

In this paper, we apply local discontinuous Galerkin (LDG) methods for pattern formation dynamical model in polymerizing actin flocks. There are two main difficulties in designing effective numerical solvers. First of all, the density function is non-negative, and zero is an unstable equilibrium solution. Therefore, negative density values may yield blow-up solutions. To obtain positive numerical approximations, we apply the positivity-preserving (PP) techniques. Secondly, the model may contain stiff source. The most commonly used time integration for the PP technique is the strong-stability-preserving Runge-Kutta method. However, for problems with stiff source, such time discretizations may require strictly limited time step sizes, leading to large computational cost. Moreover, the stiff source any trigger spurious filament polarization, leading to wrong numerical approximations on coarse meshes. In this paper, we combine the PP LDG methods with the semi-implicit Runge-Kutta methods. Numerical experiments demonstrate that the proposed method can yield accurate numerical approximations with relatively large time steps.

Publication Title

Journal of Computational Mathematics

Share

COinS