Document Type


Publication Date



Department of Physics


Measuring the sum of the three active neutrino masses, M ν , is one of the most important challenges in modern cosmology. Massive neutrinos imprint characteristic signatures on several cosmological observables, in particular, on the large-scale structure of the universe. In order to maximize the information that can be retrieved from galaxy surveys, accurate theoretical predictions in the nonlinear regime are needed. Currently, one way to achieve those predictions is by running cosmological numerical simulations. Unfortunately, producing those simulations requires high computational resources—several hundred to thousand core hours for each neutrino mass case. In this work, we propose a new method, based on a deep-learning network (D3M), to quickly generate simulations with massive neutrinos from standard ΛCDM simulations without neutrinos. We computed multiple relevant statistical measures of deep-learning generated simulations and conclude that our approach is an accurate alternative to the traditional N-body techniques. In particular the power spectrum is within ≃6% down to nonlinear scales k = 0.7 h Mpc−1. Finally, our method allows us to generate massive neutrino simulations 10,000 times faster than the traditional methods.

Publisher's Statement

© 2023. The Author(s). Published by the American Astronomical Society. Publisher’s version of record:

Publication Title

Astrophysical Journal

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Publisher's PDF

Included in

Physics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.