Document Type

Article

Publication Date

4-21-2023

Department

Department of Computer Science

Abstract

Rough set theory places great importance on approximation accuracy, which is used to gauge how well a rough set model describes a target concept. However, traditional approximation accuracy has limitations since it varies with changes in the target concept and cannot evaluate the overall descriptive ability of a rough set model. To overcome this, two types of average approximation accuracy that objectively assess a rough set model’s ability to approximate all information granules is proposed. The first is the relative average approximation accuracy, which is based on all sets in the universe and has several basic properties. The second is the absolute average approximation accuracy, which is based on undefinable sets and has yielded significant conclusions. We also explore the relationship between these two types of average approximation accuracy. Finally, the average approximation accuracy has practical applications in addressing missing attribute values in incomplete information tables.

Publisher's Statement

© 2023The Authors. CAAI Transactions on Intelligence Technology published by John Wiley& Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology. Publisher’s version of record: https://doi.org/10.1049/cit2.12222

Publication Title

CAAI Transactions on Intelligence Technology

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Version

Publisher's PDF

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.