The Effects of Thermal Treatment on the Properties and Performance of Hot Extruded Zn-Based Bioresorbable Alloy for Vascular Stenting Applications

Document Type

Conference Proceeding

Publication Date

2-2023

Department

Department of Materials Science and Engineering

Abstract

A new series of zinc alloys is in development for bioresorbable stent implantation to alleviate the current materials’ long-term complications. Characterization and optimization of the microstructure and corresponding mechanical properties during manufacturing stages will help researchers meet the required values. In this study, the effect of hot extrusion on the Zn-Ag-Mn-Cu-Zr-Ti alloy is characterized. Additionally, thermal treatments at 390 °C for 15, 25, 40, 60, and 120 min were performed to evaluate the effect of intermetallic phase fractions on the corrosion resistance and mechanical strength. Quantitative analysis of X-ray diffraction data demonstrates that the fractions of the MnZn13, ZrZn22, and Zn0.75Ag0.15Mn0.10 intermetallic phases decrease as the thermal treatment time increases. Corrosion tests reveal a reduction in the corrosion rate of the extruded alloy after thermal treatment. The results of uniaxial compression tests and tensile tests show lower strength and higher ductility in all heat-treated conditions compared with the as-extruded condition.

Publication Title

Minerals, Metals and Materials Series

ISBN

9783031225239

Share

COinS