Document Type
Article
Publication Date
2-2023
Department
College of Forest Resources and Environmental Science
Abstract
Partial liquefaction of residual biomass shows good potential for developing new materials suitable for making bio-based composites. Three-layer particleboards were produced by replacing virgin wood particles with partially liquefied bark (PLB) in the core or surface layers. PLB was prepared by the acid-catalyzed liquefaction of industrial bark residues in polyhydric alcohol. The chemical and microscopic structure of bark and residues after liquefaction were evaluated by means of Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM), while the particleboards were tested for their mechanical and water-related properties, as well as their emission profiles. Through a partial liquefaction process, some FTIR absorption peaks of the bark residues were lower than those of raw bark, indicating hydrolysis of chemical compounds. The surface morphology of bark did not change considerably after partial liquefaction. Particleboards with PLB in the core layers showed overall lower densities and mechanical properties (modulus of elasticity, modulus of rupture, and internal bond strength), and were less water-resistant as compared to the ones with PLB used in the surface layers. Formaldehyde emissions from the particleboards were 0.284–0.382 mg/m2·h, and thus, below the E1 class limit required by European Standard EN 13986:2004. The major emissions of volatile organic compounds (VOCs) were carboxylic acids as oxidization and degradation products from hemicelluloses and lignin. The application of PLB in three-layer particleboards is more challenging than in single-layer boards as PLB has different effects on the core and surface layers.
Publication Title
Materials
Recommended Citation
Jiang, W.,
Adamopoulos, S.,
Hosseinpourpia, R.,
Walther, T.,
&
Medved, S.
(2023).
Properties and Emissions of Three-Layer Particleboards Manufactured with Mixtures of Wood Chips and Partially Liquefied Bark.
Materials,
16(5).
http://doi.org/10.3390/ma16051855
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/16998
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Version
Publisher's PDF
Publisher's Statement
Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. Publisher’s version of record: https://doi.org/10.3390/ma16051855