Document Type

Article

Publication Date

2-22-2023

Department

Department of Mechanical Engineering-Engineering Mechanics

Abstract

Boron nitride nanotubes (BNNTs) are a very promising reinforcement for future high-performance composites because of their excellent thermo-mechanical properties. To take full advantage of BNNTs in composite materials, it is necessary to have a comprehensive understanding of the wetting characteristics of various high-performance resins. Molecular dynamics (MD) simulations provide an accurate and efficient approach to establish the contact angle values of engineering polymers on reinforcement surfaces, which offers a measure for the interaction between the polymer and reinforcement. In this research, MD simulations and experiments are used to determine the wettability of various epoxy systems on BNNT surfaces. The reactive interface force field (IFF-R) is parameterized and utilized in the simulations to accurately describe the interaction of the epoxy monomers with the BNNT surface. The effect of the epoxy monomer type, hardener type, local atomic charges, and temperature on the contact angle is established. The results show that contact angles decrease with increases in temperature for all the epoxy/hardener systems. The bisphenol-A-based epoxy system demonstrates better wettability with the BNNT surface than the bisphenol-F based epoxy system. Furthermore, the MD predictions demonstrate that these observations are validated with experimental results, wherein the same contact angle trends are observed for macroscopic epoxy drops on nonwoven nanotube papers. As wetting properties drive the resin infusion in the reinforcement materials, these results are important for the future manufacturing of high-quality BNNT/epoxy nanocomposites for high-performance applications such as aerospace and aeronautical vehicles.

Publisher's Statement

Copyright © 2023 The Authors. Published by American Chemical Society. Publisher’s version of record: https://doi.org/10.1021/acsanm.2c05285

Publication Title

ACS Applied Nano Materials

Version

Publisher's PDF

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.