WEC array networked microgrid control design and energy storage system requirements

Document Type

Article

Publication Date

1-20-2020

Department

Department of Mechanical Engineering-Engineering Mechanics

Abstract

Wave Energy Converter (WEC) technologies transform power from the waves to the electrical grid. WEC system components are investigated that support the performance, stability, and efficiency as part of a WEC array. To this end, Aquaharmonics Inc took home the $1.5 million grand prize in the 2016 U.S. Department of Energy Wave Energy Prize, an 18-month design-build-test competition to increase the energy capture potential of wave energy devices. Aquaharmonics intends to develop, build, and perform open ocean testing on a 1: 7 scale device. Preliminary wave tank testing on the mechanical system of the 1: 20 scale device has yielded a data-set of operational conditions and performance. In this paper, the Hamiltonian surface shaping and power flow control (HSSPFC) method is used in conjunction with scaled wave tank test data to explore the design space for the electrical transmission of energy to the shore-side power grid. Of primary interest is the energy storage system (ESS) that will electrically link the WEC to the shore. Initial analysis results contained in this paper provide a trade-off in storage device performance and design selection.

Publication Title

OCEANS 2019 MTS/IEEE SEATTLE

Share

COinS