Recognizing sets of generators in finite polar spaces
Document Type
Article
Publication Date
7-2020
Department
Department of Mathematical Sciences
Abstract
We characterize non-singular polar spaces embedded in non-singular polar spaces of the same rank using subsets of generators satisfying a natural intersection condition. By [7] and [8] this result has applications to the theory of Cameron-Liebler sets. In fact, our result is a significant improvement of the main result in [7].
Publication Title
Journal of Combinatorial Theory, Series A
Recommended Citation
DeWinter, S.,
&
Schillewaert, J.
(2020).
Recognizing sets of generators in finite polar spaces.
Journal of Combinatorial Theory, Series A,
173.
http://doi.org/10.1016/j.jcta.2020.105211
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/1679