Highly stable potassium metal batteries enabled by regulating surface chemistry in ether electrolyte

Document Type

Article

Publication Date

11-2021

Department

Department of Physics

Abstract

Rechargeable potassium (K) metal batteries (PMBs) remain deeply challenged by the lack of suitable electrolytes that are stable against both highly reactive K anodes and 4 V-class cathodes. Despite their good reductive stability with K metal, classic potassium bis(fluorosulfonyl)amide (KFSI)-based ether electrolytes are typically used only in 3 M), is reported for the first time to be used in 4 V-class PMBs. A stable N/F-rich solid electrolyte interphase (SEI) is formed, enabling dense and uniform K deposition, especially under high current density. Remarkably, the PMBs with Prussian blue cathode exhibits an unprecedented cycle life (1000 cycles, 122 days). This work provides new perspectives of electrolyte design for 4 V-class PMBs.

Publication Title

Energy Storage Materials

Share

COinS