Document Type

Article

Publication Date

10-24-2022

Department

Department of Biological Sciences

Abstract

Over the past several decades, the value of drinking water treatment residuals (WTRs), a byproduct of the coagulation process during water purification, has been recognized in various environmental applications, including sustainable remediation of phosphorus (P)-enriched soils. Aluminum-based WTRs (Al-WTRs) are suitable adsorbent materials for P, which can be obtained and processed inexpensively. However, given their heterogeneous nature, it is essential to identify an easily analyzable chemical property that can predict the capability of Al-WTRs to bind P before soil amendment. To address this issue, thirteen Al-WTRs were collected from various geographical locations around the United States. The non-hazardous nature of the Al-WTRs was ascertained first. Then, their P adsorption capacities were determined, and the chemical properties likely to influence their adsorption capacities were examined. Statistical models were built to identify a single property to best predict the P adsorption capacity of the Al-WTRs. Results show that all investigated Al-WTRs are safe for environmental applications, and oxalate-extractable aluminum is a significant indicator of the P adsorption capacity of Al-WTRs (p-value = 0.0002, R2 = 0.7). This study is the first to report a simple chemical test that can be easily applied to predict the efficacy of Al-WTRs in binding P before their broadscale land application.

Publisher's Statement

: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. Publisher’s version of record: https://doi.org/10.3390/molecules27217194

Publication Title

Molecules

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Version

Publisher's PDF

Included in

Biology Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.