Document Type
Article
Publication Date
10-11-2022
Department
Department of Civil, Environmental, and Geospatial Engineering
Abstract
Landslides in urban areas have been relatively well-documented in landslide inventories despite issues in accuracy and completeness, e.g., the absence of small landslides. By contrast, less attention has been paid to landslides in sparsely populated areas in terms of their occurrences and locations. This study utilizes high-resolution and LiDAR-derived digital elevation models (DEMs) at two different times for landslide detection to (1) improve the localization and detection accuracies in landslide inventories, (2) minimize human intervention in the landslide detection process, and (3) identify landslides that cannot be easily documented in the current state of the practice. To achieve this goal, multiple preprocessing steps were used to ensure the spatial alignment of the multi-temporal DEMs. Map algebra was then used to calculate the vertical displacement for each cell and create a DEM of Difference (DoD) to obtain a quantitative estimation of ground deformations. Next, the elevation changes were filtered via an appropriate Level of Detection (LoD) threshold to mark potential landslide candidates. The landslide candidates were further assessed with the aid of customized topographic maps as auxiliary data and pattern recognition to distinguish landslides (true positive changes) from construction, erosion, and deposition (false positives). The results from the proposed method were compared with existing landslide inventories and reports to evaluate its performance. The new method was also validated with temporal high-resolution Google Earth images. The results showed the successful application of the method in landslide detection and mapping. Compared with traditional methods, the proposed method provides a semi-automatic way to obtain landslide inventories with publicly available yet lowly utilized DEM data, which can be valuable in preliminary analysis for landslide detection.
Publication Title
Geosciences (Switzerland)
Recommended Citation
Azmoon, B.,
Biniyaz, A.,
&
Liu, Z.
(2022).
Use of High-Resolution Multi-Temporal DEM Data for Landslide Detection.
Geosciences (Switzerland),
12(10).
http://doi.org/10.3390/geosciences12100378
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/16503
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Version
Publisher's PDF
Publisher's Statement
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. Publisher’s version of record: https://doi.org/10.3390/geosciences12100378