Document Type

Article

Publication Date

9-19-2022

Department

Department of Physics

Abstract

The concept of exceptional points-based optical amplifiers (EPOAs) has been recently proposed as a new paradigm for miniaturizing optical amplifiers while simultaneously enhancing their gain-bandwidth product. While the operation of this new family of amplifiers in the classical domain provides a clear advantage, their performance in the quantum domain has not yet been evaluated. Particularly, it is not clear how the quantum noise introduced by vacuum fluctuations will affect their operation. Here, we investigate this problem by considering three archetypal EPOA structures that rely either on unidirectional coupling, parity-time symmetry, or particle-hole symmetry for implementing the exceptional point. By using the Heisenberg-Langevin formalism, we calculate the added quantum noise in each of these devices and compare it with that of a quantum-limited amplifier scheme that does not involve any exceptional points. Our analysis reveals several interesting results: most notably that while the quantum noise of certain EPOAs can be comparable to those associated with conventional amplifier systems, in general the noise does not follow a universal scaling as a function of the exceptional point but rather varies from one implementation to another.

Publisher's Statement

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Publisher’s version of record: https://doi.org/10.1103/PhysRevResearch.4.033226

Publication Title

Physical Review Research

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Version

Publisher's PDF

Included in

Physics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.