Modeling of gate effects on electron transport in a single-electron transistor with two semiconducting islands between two semiconducting electrodes

Document Type

Conference Proceeding

Publication Date

1-10-2019

Department

Department of Electrical and Computer Engineering

Abstract

Electron transport through a single-electron transistor (SET) device with two semiconducting islands, two semiconducting electrodes (source and drain), and a metallic gate is investigated using a semi-classical model for electron tunneling and Kinetic Monte Carlo simulation. Experimental studies have demonstrated that there are advantages to utilizing SET devices with semiconducting (silicon) materials, as compared to metallic SETs, such as thermal filtering and improved gate control, which are of a great importance in practical applications. The model of the semiconductors includes an energy band gap and a modified-parabolic density of states in the valence and conduction bands. Although this leads to more complex calculations to predict electron tunneling between semiconducting materials as compared to devices with metallic islands and electrodes, the semiconductors also give more parameters by which to control the device characteristics.

Publisher's Statement

©2018 IEEE. Publisher’s version of record: https://doi.org/10.1109/NMDC.2018.8605843

Publication Title

2018 IEEE 13th Nanotechnology Materials and Devices Conference (NMDC)

Share

COinS