Document Type

Article

Publication Date

6-20-2022

Department

Department of Applied Computing

Abstract

This study investigates the best available methods for remote monitoring inland small-scale waterbodies, using remote sensing data from both Landsat-8 and Sentinel-2 satellites, utilizing a handheld hyperspectral device for ground truthing. Monitoring was conducted to evaluate water quality indicators: chlorophyll-a (Chl-a), colored dissolved organic matter (CDOM), and turbidity. Ground truthing was performed to select the most suitable atmospheric correction technique (ACT). Several ACT have been tested: dark spectrum fitting (DSF), dark object subtraction (DOS), atmospheric and topographic correction (ATCOR), and exponential extrapolation (EXP). Classical sampling was conducted first; then, the resulting concentrations were compared to those obtained using remote sensing analysis by the above-mentioned ACT. This research revealed that DOS and DSF achieved the best performance (an advantage ranging between 29% and 47%). Further, we demonstrated the appropriateness of the use of Sentinel-2 red and vegetation red edge reciprocal bands (1/(B4 X B6)) for estimating Chl-a (R2 = 0.82, RMSE = 14.52mg/m3). As for Landsat-8, red to near-infrared ratio (B4/B5) produced the best performing model (R2 = 0.71, RMSE = 39.88 mg/m3), but it did not perform as well as Sentinel-2. Regarding turbidity, the best model (with (R2 =0.85, RMSE = 0.87 NTU) obtained by Sentinel-2 utilized a single band (B4), while the best model (with R2 = 0.64, RMSE = 0.90 NTU) using Landsat-8 was performed by applying two bands (B1/B3). Mapping the water quality parameters using the best performance biooptical model showed the significant effect of the adjacent land on the boundary pixels compared to pixels of deeper water.

Publication Title

Journal of Sensors

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Version

Publisher's PDF

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.