Reaction-Free Concentration Gradient Generation in Spatially Nonuniform AC Electric Fields
Document Type
Article
Publication Date
5-4-2022
Department
Department of Chemical Engineering
Abstract
The ability to generate stable, spatiotemporally controllable concentration gradients is critical for both electrokinetic and biological applications such as directional wetting and chemotaxis. Electrochemical techniques for generating solution and surface gradients display benefits such as simplicity, controllability, and compatibility with automation. Here, we present an exploratory study for generating microscale spatiotemporally controllable gradients using a reaction-free electrokinetic technique in a microfluidic environment. Methanol solutions with ionic fluorescein isothiocyanate (FITC) molecules were used as an illustrative electrolyte. Spatially nonuniform alternating current (AC) electric fields were applied using hafnium dioxide (HfO2)-coated Ti/Au electrode pairs. Results from spatial and temporal analyses along with control experiments suggest that the FITC ion concentration gradient in bulk fluid (over 50 μm from the electrode) was established due to spatial variation of electric field density, and was independent of electrochemical reactions at the electrode surface. The established ion concentration gradients depended on both amplitudes and frequencies of the oscillating AC electric field. Overall, this work reports a novel approach for generating stable and spatiotemporally tunable gradients in a microfluidic chamber using a reaction-free electrochemical methodology.
Publication Title
Langmuir
Recommended Citation
An, R.,
&
Minerick, A.
(2022).
Reaction-Free Concentration Gradient Generation in Spatially Nonuniform AC Electric Fields.
Langmuir,
38(19), 5977-5986.
http://doi.org/10.1021/acs.langmuir.2c00013
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/16046