Mechanism of Mucin Recognition by Lectins: A Thermodynamic Study
Document Type
Book Chapter
Publication Date
3-24-2022
Department
Department of Chemistry; Health Research Institute
Abstract
Isothermal titration microcalorimetry (ITC) can directly determine the thermodynamic binding parameters of biological molecules including affinity constant, binding stoichiometry, heat of binding (enthalpy) and indirectly the entropy, and free energy of binding. ITC has been extensively used to study the binding of lectins to mono- and oligosaccharides, but limitedly in applications to lectin–glycoprotein interactions. Inherent experimental challenges to ITC include sample precipitation during the experiment and relative high amount of sample required, but careful design of experiments can minimize these problems and allow valuable information to be obtained. For example, the thermodynamics of binding of lectins to multivalent globular and linear glycoproteins (mucins) have been described. The results are consistent with a dynamic binding mechanism in which lectins bind and jump from carbohydrate to carbohydrate epitope in these molecules leading to increased affinity. Importantly, the mechanism of binding of lectins to mucins appears similar to that for a variety of protein ligands binding to DNA. Recent results also show that high-affinity lectin–mucin cross-linking interactions are driven by favorable entropy of binding that is associated with the bind and jump mechanism. The results suggest that the binding of ligands to biopolymers, in general, may involve a common mechanism that involves enhanced entropic effects that facilitate binding interactions.
Publication Title
Methods in Molecular Biology
Recommended Citation
Dam, T. K.,
Edwards, J.,
Kadav, P. D.,
&
Brewer, C.
(2022).
Mechanism of Mucin Recognition by Lectins: A Thermodynamic Study.
Methods in Molecular Biology,
2442, 169-185.
http://doi.org/10.1007/978-1-0716-2055-7_10
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/15868