Document Type

Article

Publication Date

2-8-2022

Department

Department of Applied Computing

Abstract

In this paper, a machine learning (ML) approach is proposed to detect and classify jamming attacks against orthogonal frequency division multiplexing (OFDM) receivers with applications to unmanned aerial vehicles (UAVs). Using software-defined radio (SDR), four types of jamming attacks; namely, barrage, protocol-aware, single-tone, and successive-pulse are launched and investigated. Each type is qualitatively evaluated considering jamming range, launch complexity, and attack severity. Then, a systematic testing procedure is established by placing an SDR in the vicinity of a UAV (i.e., drone) to extract radiometric features before and after a jamming attack is launched. Numeric features that include signal-to-noise ratio (SNR), energy threshold, and key OFDM parameters are used to develop a feature-based classification model via conventional ML algorithms. Furthermore, spectrogram images collected following the same testing procedure are exploited to build a spectrogram-based classification model via state-of-the-art deep learning algorithms (i.e., convolutional neural networks). The performance of both types of algorithms is analyzed quantitatively with metrics including detection and false alarm rates. Results show that the spectrogram-based model classifies jamming with an accuracy of 99.79% and a false-alarm of 0.03%, in comparison to 92.20% and 1.35%, respectively, with the feature-based counterpart.

Publisher's Statement

© 2022. CCBY - IEEE is not the copyright holder of this material. Please follow the instructions via https://creativecommons.org/licenses/by/4.0/ to obtain full-text articles and stipulations in the API documentation. Publisher’s version of record: https://doi.org/10.1109/ACCESS.2022.3150020

Publication Title

IEEE Access

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Version

Publisher's PDF

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.