High-fidelity energy deposition ignition model coupled with flame propagation models at engine-like flow conditions

Document Type

Conference Proceeding

Publication Date

1-1-2021

Abstract

With the heightened pressure on car manufacturers to increase the efficiency and reduce the carbon emissions of their fleets, more challenging engine operation has become a viable option. Highly dilute, boosted, and stratified charge, among others, promise engine efficiency gains and emissions reductions. At such demanding engine conditions, the spark-ignition process is a key factor for the flame initiation propagation and the combustion event. From a computational standpoint, there exists multiple spark-ignition models that perform well under conventional conditions but are not truly predictive under strenuous engine operation modes, where the underlying physics needs to be expanded. In this paper, a hybrid Lagrangian-Eulerian spark-ignition (LESI) model is coupled with different turbulence models, grid sizes, and combustion models. The ignition model, previously developed, relies on coupling Eulerian energy deposition with a Lagrangian particle evolution of the spark channel, at every time-step. The spark channel is attached to the electrodes and allowed to elongate at a speed derived from the flow velocity. The LESI model is used to simulate spark ignition in a non-quiescent crossflow environment at engine-like conditions, using CONVERGE commercial CFD solver. The results highlight the consistency, robustness, and versatility of the model in a range of engine-like setups, from typical with RANS and a larger grid size to high fidelity with LES and a finer grid size. The flame kernel growth is then evaluated against schlieren images from an optical constant volume ignition chamber with a focus on the performance of flame propagation models, such as G-equation and thickened flame model, versus the baseline well-stirred reactor model. Finally, future development details are discussed.

Publication Title

Proceedings of ASME 2021 Internal Combustion Engine Division Fall Technical Conference, ICEF 2021

ISBN

9780791885512

Share

COinS